The genetic and demographic consequences of population subdivision have received considerable attention from conservation biologists. In particular, losses of genetic variability and reduced viability and fecundity due to inbreeding (inbreeding depression) are of concern. Studies of domestic, laboratory and zoo populations have shown inbreeding depression in a variety of traits related to fitness. Consequently, inbreeding depression is widely accepted as a fact. Recently, however, the relative impact of inbreeding on the viability of natural populations has been questioned. Work on the cheetah (Acinonyx jubatus), for example, has emphasized the overwhelming importance of environmental factors on mortality in the wild. Here we report that song sparrows (Melospiza melodia) that survived a severe population bottleneck were a non-random subset of the pre-crash population with respect to inbreeding, and that natural selection favoured outbred individuals. Thus, inbreeding depression was expressed in the face of an environmental challenge. Such challenges are also likely to be faced by inbred populations of endangered species. We suggest that environmental and genetic effects on survival may interact and, as a consequence, that their effects on individuals and populations should not be considered independently.