Synchronized pulmonary granulomas (GRs) were induced in presensitized mice by intravenous embolization of polymer beads bound with purified protein derivative (PPD) of Mycobacteria tuberculosis or soluble antigens derived from Schistosoma mansoni eggs (SEA). Uncoated beads served as a foreign body control (CON). Antigen-coated beads elicited GRs with characteristic epithelioid macrophages and multinucleate giant cells by 4 days after embolization. Unlike PPD GR, SEA bead lesions contained eosinophils, whereas CON beads elicited only a limited mononuclear infiltrate. GRs and draining lymph nodes (LN) were assessed on days 2, 4, and 8 for Th1-(interleukin-2 [IL-2], interferon-gamma[IFN] and Th2-type (IL-4, IL-5, and IL-10) cytokines. CON GR produced only a small amount of IFN-gamma on day 2 and failed to induce a significant response in draining LN. In contrast, both PPD and SEA antigen-coated beads induced reactive lymphoid hyperplasia but differed greatly in local and regional cytokine profiles. PPD GR produced IFN-gamma on day 2 and the draining LN produced predominantly Th1 cytokines on days 2 and 4. In contrast, SEA beads GRs were dominated by Th2 cytokines. The corresponding LN produced IL-2 and IL-4 on day 2; IL-2, IL-4, IFN-gamma, and IL-10 on day 4; then IL-2, IFN-gamma, and IL-4 on day 8, probably reflecting maturational changes of T cells. Macrophages (MP) from bead GR also showed different patterns of IL-6 and tumor necrosis factor (TNF) production. Compared with CON GR, MPs from PPD GR were weak sources of IL-6, whereas those of SEA GR showed enhanced and accelerated production. In contrast, MP of PPD GR had augmented TNF-producing capacity, whereas those of SEA GR showed delayed TNF production. In vivo depletion of TNF, respectively, caused 40 and 10% decreases in PPD GR and SEA GR but had no effect on CON GR area, indicating that TNF contributed to a greater degree to the PPD response. These data show that depending on the inciting agent, GR can be mediated by different cytokines. Characterization of inflammatory lesions by cytokine profiles should allow design of more rational therapeutic interventions.