Immediate-early genes, such as c-fos, couple extracellular signals to genetic changes in the cell. We have previously demonstrated that depolarization with 50 mM KCl increases Fos immunoreactivity in hypothalamic tyrosine hydroxylase (TH) and oxytocin immunoreactive (-ir) neurons in primary culture. This Fos activation occurs within 1.5-2 h in TH-ir cells. In the present study, we examined the effects of depolarization, glutamate receptor activation and adenylyl cyclase stimulation on Fos-ir to determine the possible mechanism(s) of Fos activation in TH-ir neurons. Hypothalamic cultures were treated with KCl, glutamate or forskolin, and Fos and TH were visualized immunocytochemically. Forskolin increased the percentage of Fos/TH-ir neurons in a dose-dependent manner, with a maximal stimulation of 53.4 +/- 4.5% Fos/TH-ir neurons at 30 microM forskolin. The dose-response curve for glutamate was steep, with a maximal stimulation of 24.8 +/- 2.1% Fos-ir neurons at 100 microM. 50 mM KCl resulted in 50.0 +/- 0.8% Fos/TH-ir neurons. Pretreatment with verapamil decreased KCl induced Fos-ir by 57%, glutamate by 65% and forskolin by 39%. Combined drug administration demonstrated significant additivity between forskolin and glutamate, and forskolin and KCl, however, no significant additivity was found with KCl and glutamate. The results are discussed in terms of cAMP and calcium mediation of the Fos response to these stimuli.