Expression of nuclear retinoic acid receptors during mouse odontogenesis

Differentiation. 1994 Sep;57(3):195-203. doi: 10.1046/j.1432-0436.1994.5730195.x.

Abstract

The developmental expression of retinoic acid (RA) nuclear receptors RAR(alpha, beta, gamma) and RXR(alpha, beta, gamma) was analysed during mouse odontogenesis by in situ hybridization on frozen sections and compared with the expression patterns of the cellular retinoic acid binding proteins CRABPI and II. The transcripts distribution of each RAR and RXR was basically similar in developing molars and incisors. RAR alpha and RXR alpha were preferentially expressed in dental epithelia, whereas RAR gamma and RXR gamma were transcribed in the dental mesenchyme. RAR beta, RAR gamma and RXR beta displayed both epithelial and mesenchymal expression. RAR beta expression was initiated during bell stage. RXR gamma transcripts were observed only at day 19.5 post coitum in the mitogenic mesenchyme facing the epithelial loops. Odontoblasts expressed RAR beta and RAR gamma, RXR alpha and RXR beta. Preameloblasts expressed RXR alpha and RXR beta and ameloblasts RXR gamma, RXR alpha and RXR beta. RAR alpha transcription in the incisor preameloblasts and ameloblasts was not observed in the first molar. The coexpression between RARs and RXRs might be important to form RAR/RXR heterodimers which are necessary to activate the transcriptions of target genes. CRABPI and CRABPII demonstrated graded variation of expression during odontogenesis in the mesenchyme and in the inner dental epithelium respectively. The pattern of CRABPI transcripts overlapped at least partially with expressions of all the studied nuclear receptors whereas CRABPII epithelial expression was superimposed with the transcription of RAR alpha, RXR alpha and RXR beta. These cytoplasmic proteins might participate in the storage and/or metabolism of RA and then distribute RA to colocalized nuclear receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Nucleus / chemistry*
  • Female
  • In Situ Hybridization
  • Mice
  • Mice, Inbred C57BL
  • Pregnancy
  • Receptors, Retinoic Acid / analysis*
  • Retinoid X Receptors
  • Tooth / chemistry*
  • Tooth / growth & development*
  • Transcription Factors / analysis

Substances

  • Receptors, Retinoic Acid
  • Retinoid X Receptors
  • Transcription Factors