Vocal-acoustic pathways in a teleost fish

J Neurosci. 1994 Jul;14(7):4025-39. doi: 10.1523/JNEUROSCI.14-07-04025.1994.

Abstract

Many teleost fish generate acoustic signals for vocal communication by the synchronized, high-frequency contraction of skeletal, sonic muscles. In midshipman, eight groups of brainstem neurons were distinguished after biocytin application to the sonic nerve that, we propose, represent the entire vocal motor circuit. Biocytin-filled terminals were ubiquitous within all areas containing labeled neurons and, together with ultrastructural evidence, suggested a serial, transneuronal transport at synaptic sites between at least three neuronal groups. The most intensely labeled neurons were positioned in the caudal brainstem and included a previously characterized pacemaker-motoneuron circuit and a newly recognized ventral medullary nucleus that itself gave rise to extensive commissural and lateral brainstem bundles linking the pacemaker circuitry to the rostral brainstem. Five additional groups formed a column rostrally within the medial brainstem adjacent to eighth nerve (octaval)-recipient nuclei largely presumed to be acoustic. This column extended dorsally up to the ventricular cell layer and as far anterior as midbrain isthmal levels. The best-defined group was in the octaval efferent nucleus that directly innervates the sacculus that is considered the auditory division of the inner ear. Saccular afferents and neurons throughout the medial column were also filled after biocytin application to the saccular nerve. This vocal-acoustic network overlaps low-threshold, electrical stimulation sites in the rostral brainstem that elicit vocalizations. The medial column must therefore be the origin of the descending pathway controlling activation of the vocal pacemaker circuitry and likely forms the basis for acoustically elicited vocalizations. We suggest this network, together with input from the pacemaker circuitry, is also the origin of a vocal-related, corollary discharge to acoustic nuclei. Direct links between vocal and acoustic brain regions are thus traits common to aquatic and terrestrial vertebrates.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Auditory Pathways / physiology*
  • Brain Stem / physiology
  • Fishes / physiology*
  • Lysine / analogs & derivatives
  • Vestibulocochlear Nerve / physiology
  • Vocalization, Animal / physiology*

Substances

  • biocytin
  • Lysine