Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A

J Cell Biol. 1994 Aug;126(3):677-87. doi: 10.1083/jcb.126.3.677.

Abstract

Recent evidence suggests a role for heterotrimeric G proteins in vesicular transport. Cholera toxin, which activates Gs alpha by ADP-ribosylation, has been reported to stimulate both apical secretion (Pimplikar, S.W., and K. Simons. 1993. Nature (Lond.). 352:456-458) and apically directed transcytosis (Bomsel, M., and K.E. Mostov. 1993. J. Biol. Chem. 268:25824-25835) in MDCK cells, via a cAMP-independent mechanism. Here, we demonstrate that apical secretion and apically directed transcytosis are significantly stimulated by agents that elevate cellular cAMP. Forskolin, which activates adenylyl cyclase directly, and 8BrcAMP augment both transport processes in MDCK cells. The increase is not limited to receptor-mediated transport (polymeric Ig receptor), since transcytosis of ricin, a galactose-binding lectin, is similarly stimulated. The effects of elevated cellular cAMP on apical secretion and transcytosis are apparently mediated via protein kinase A (PKA), as they are inhibited by H-89, a selective PKA inhibitor. Experiments employing a 17 degrees C temperature block indicate that cAMP/PKA acts at a late, possibly rate-limiting stage in the transcytotic pathway, after translocation of internalized markers into the apical cytoplasm. However, no significant stimulus of apical recycling was observed in the presence of FSK, suggesting that cAMP/PKA either affects transcytosis at a level proximal to apical early endosomes and/or specifically increases the efficiency by which transcytosing molecules are delivered to the apical plasma membrane. Finally, we overexpressed wild-type Gs alpha and a mutant, Q227L, which constitutively activates adenylyl cyclase, in MDCK cells. Although Q227L increased transcytosis more than wild-type Gs alpha, neither construct was as effective as FSK in stimulating transcytosis, arguing against a significant role of Gs alpha in transcytosis independent of cAMP and PKA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenylyl Cyclases / metabolism
  • Animals
  • Biological Transport
  • Cell Line
  • Cholera Toxin / pharmacology
  • Colforsin / pharmacology
  • Cyclic AMP / metabolism*
  • Cyclic AMP-Dependent Protein Kinases / antagonists & inhibitors
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Dogs
  • Enzyme Activation
  • GTP-Binding Proteins / metabolism*
  • Glycoproteins / metabolism
  • Humans
  • Ricin / metabolism
  • Temperature

Substances

  • Glycoproteins
  • Colforsin
  • Ricin
  • Cholera Toxin
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • GTP-Binding Proteins
  • Adenylyl Cyclases