To determine the contribution of p53 loss to tumor progression, we have induced abnormal proliferation in the brain choroid plexus epithelium of transgenic mice using a SV40 T antigen fragment that perturbs pRB family function but does not affect p53 function. Tumors induced by this mutant develop slowly compared with those induced by wild-type T antigen. Suppressed tumor growth is directly attributable to p53 function, since rapid tumor development occurs when the T antigen fragment is expressed in p53-null mice. In p53-heterozygous mice, stochastic loss of the wild-type p53 allele results in the focal emergence of aggressive tumor nodules characteristic of tumor progression. In each case, aggressive tumor development in the absence of p53 function corresponds to a decrease in the level of apoptosis. These results provide in vivo evidence that p53-dependent apoptosis, occurring in response to oncogenic events, is a critical regulator of tumorigenesis.