The conformationally restricted S-adenosylmethionine analogue AdoMac [S-(5'-deoxy-5'-adenosyl)-1-ammonio-4-methylsulfonio-2-cyclopenten e] has been shown to act as an enzyme activated, irreversible inhibitor of the Escherichia coli form of the enzyme S-adenosylmethionine decarboxylase. Inactivation of the enzyme is presumably initiated by formation of an imine linkage between the inhibitor and the terminal pyruvate of the enzyme, followed by base-catalyzed elimination of methylthioadenosine and generation of a latent electrophile. Removal of the driving force for the elimination of methylthioadenosine resulted in a reversibly binding inhibitor. Thus, the thioether analogue corresponding to AdoMac, and the corresponding dihydro derivative (H2-AdoMac), reversibly inhibit the enzyme. AdoMac was resolved into its four pure diastereomeric forms, and each diastereomer was evaluated as an irreversible inhibitor of the enzyme. The KI values for the individual diastereomers range between 3.83 and 39.6 microM, with the cis-1S,4R diastereomer being the most potent inhibitor. However, the kinact values for the four diastereomers are not significantly different, suggesting that the binding of each diastereomer to the enzyme is configuration-dependent, while the subsequent inactivation likely proceeds through a single intermediate which is formed from each of the four diastereomers. Since each pure diastereomer represents a distinct conformational mimic exhibiting restricted sidechain rotation, the data suggests that these and related analogues may be useful as conformational probes for the catalytic site of AdoMet-DC.