Application of radio-frequency power in multidimensional NMR experiments can significantly increase the sample temperature compared to that of the surrounding gas flow. Radio-frequency heating effects become more severe at higher magnetic field strengths and ionic strengths. The effects are particularly noticeable for experiments that utilize 1H and/or 13C isotropic mixing and broadband decoupling. If radio-frequency power is applied during the systematically increasing evolution period t1, the sample temperature can change with t1 and thereby cause line-shape distortions. Such distortions are easily avoided by ensuring that the average radio-frequency power remains constant during the entire experiment.