When Dictyostelium cells are stimulated with cyclic adenosine 3',5'-monophosphate (cAMP), the major surface cAMP receptor expressed in early development, cAR1, undergoes a rapid phosphorylation and parallel decrease in electrophoretic mobility which may serve to regulate the activity of this G protein-coupled receptor. Biochemical analyses indicate the electrophoretic mobility shift is caused by phosphorylation of serine residues within the C-terminal cytoplasmic domain. The 18 serines of this domain are grouped in four clusters, designated 1 to 4 (in N- to C-terminal order). Two approaches were taken to determine the distribution of phosphorylation sites among the serine clusters. First, a proteolytic analysis of the C-terminal domain was performed. Second, mutants lacking various combinations of the serine clusters were created by site-directed mutagenesis and their abilities to undergo ligand-induced modification were determined. Both approaches yielded corroborative results consistent with the following model: the stimulus induces the addition of approximately two phosphates to cluster 1 and one to cluster 2; basal phosphorylation occurs predominantly in cluster 3 and to a lesser extent in cluster 2; and cluster 4 is not phosphorylated. The phosphorylation-deficient receptor mutants should be useful for establishing the role of ligand-induced phosphorylation of cAR1 in chemotaxis, cell-cell signaling, and gene expression.