Increased muscle perfusion reduces muscle sympathetic nerve activity during handgripping

J Appl Physiol (1985). 1993 Dec;75(6):2450-5. doi: 10.1152/jappl.1993.75.6.2450.

Abstract

This study sought to determine whether increasing blood flow to active muscles can blunt the normal rise in muscle sympathetic nerve activity (MSNA) during heavy rhythmic forearm exercise in humans. Subjects performed 5- to 6-min exercise bouts of handgripping (30/min) at 40-50% of maximum voluntary contraction (MVC). Blood flow was increased by application of suction (50 mmHg) around the forearm. Suction increased deep venous oxygen saturation in blood draining the forearm from 34 +/- 4 to 45 +/- 4%, indicating that muscle blood flow had risen by approximately 20%. Suction had no impact on the heart rate, perceived exertion, or electromyographic responses to the handgripping. During 6 min of exercise at 50% of MVC, MSNA rose from 376 +/- 67 to 970 +/- 125 units during the control trial vs. 396 +/- 69 to 729 +/- 94 units during the suction trial, and the difference was maintained during 2 min of postexercise ischemia (P < 0.05; suction < control). Mean arterial pressure (MAP) rose from 99 +/- 4 to 129 +/- 6 mmHg during control vs. 99 +/- 4 to 126 +/- 6 mmHg during the suction trial, and these responses were only different (P < 0.05; suction < control) during the final minute of the exercise bouts. During postexercise ichemia, MAP was 122 +/- 6 mmHg after the control trial but was only 112 +/- 4 mmHg after the suction trial. These results indicate that forearm suction augmented muscle blood flow, limited the activation of chemosensitive muscle afferents, and blunted the rise in MSNA during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Blood Pressure / physiology
  • Electromyography
  • Female
  • Hand / blood supply
  • Hand / physiology
  • Heart Rate / physiology
  • Humans
  • Ischemia
  • Male
  • Muscles / blood supply
  • Muscles / innervation
  • Muscles / physiology*
  • Oxygen Consumption / physiology
  • Physical Exertion / physiology*
  • Sympathetic Nervous System / physiology*