A heated (42 degrees C) microdialysis probe and its application for continuous transcutaneous sampling of ethanol and glucose through cellophane-stripped forearm skin are described. Ethanol and glucose concentration in the dialysate were measured on-line with continuous-flow analysis and compared with blood values in human volunteers after ethanol consumption (n = 4) and oral glucose testing (n = 5), respectively. For ethanol and glucose, the dialysate and blood concentrations were linearly related in each subject (r > or = 0.91, P < 0.005), although the dialysate-to-blood ratio varied among subjects. The recovery in vivo was 22.4 +/- 22.7 and 4.7 +/- 2.3% (SD) of the recovery in vitro for ethanol and glucose, respectively. The dialysate glucose concentration was independent of blood flow. When the probe temperature was increased from 32 to 42 degrees C, the dialysate-to-blood glucose ratio increased, with 2.4 +/- 1.4%/degrees C (SD) in fasting subjects (n = 4), which was similar to an increase of 2.1 +/- 0.045%/degree C in dialysate-to-medium ratio in vitro. The present approach for transcutaneous sampling may possibly be used for other substances of low molecular weight as well.