Clostridium difficile toxin B exhibits cytotoxic activity that is characterized by the disruption of the microfilamental cytoskeleton. Here we studied whether the GTP-binding Rho protein, which reportedly participates in the regulation of the actin cytoskeleton, is involved in the toxin action. Toxin B treatment of Chinese hamster ovary cells reveals a time- and concentration-dependent decrease in the ADP-ribosylation of Rho by Clostridium botulinum C3 exoenzyme in the cell lysate. Disruption of the microfilament system induced by C. botulinum C2 toxin or cytochalasin D does not cause impaired ADP-ribosylation of Rho. Toxin B exhibits its effects on Rho not only in intact cells but also when added to cell lysates. Besides endogenous Rho, RhoA-glutathione S-transferase (Rho-GST) fusion protein added to cell lysate showed decreased ADP-ribosylation after toxin B treatment. Immunoblot analysis reveals identical amounts of Rho-GST and no change in molecular mass after toxin B treatment compared with controls. ADP-ribosylation of Rho-GST purified from toxin B-treated cell lysate is inhibited, indicating a modification of Rho itself. Finally, transfection of rhoA DNA under the control of a strong promoter into cells protects them from the activity of toxin B. Altogether, the data indicate that C. difficile toxin B acts directly or indirectly on Rho proteins to inhibit ADP-ribosylation and suggest that the cytotoxic effect of toxin B involves Rho.