Adherence of oral microorganisms to guided tissue membranes: an in vitro study

J Periodontol. 1994 Mar;65(3):211-8. doi: 10.1902/jop.1994.65.3.211.

Abstract

Microorganisms can adhere and colonize on an exposed guided tissue regeneration (GTR) membrane thus developing a nidus of infection. The purpose of this study was to compare early bacterial adhesion to three different GTR membranes. Expanded polytetrafluoroethylene, polyglactin 910, and collagen were used as the test membranes. In part I of this study 15 different oral microbes were used to compare their relative ability to adhere to the membranes. Six of the most strongly adherent bacteria (Actinomyces viscosus, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans, Fusobacterium nucleatum, and Selenomonas sputigena) were selected for part II of this study. The membranes were placed in tubes containing broth cultures containing identical concentrations (1 x 10(8) cells/ml) of these bacteria at 37 degrees C. Membranes were placed in tubes of media without bacteria as controls. At 4, 6, 12, and 24 hours, the bacterial cultures were decanted and the membranes in the tubes were agitated gently in reduced transfer fluid (RTF) 4 times to remove non-adherent bacteria. Each tube was then sonicated for 30 seconds in 10 ml RTF to detach adherent bacteria. The detached adherent bacteria were counted using a Petroff-Hausser chamber. Data were analyzed by using the SAS program. Analysis of variance was used to test for differences between multiple means. Results showed S. mutans had the strongest attachment to the collagen membrane at 4 and 6 hours. Selenomonas sputigena had the lowest adherence capability to all test membranes. Polyglactin 910 had significantly (P < 0.05) lower S. mutants adherence than either the ePTFE or the collagen membrane at 4 and 6 hours.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actinomyces viscosus / physiology
  • Aggregatibacter actinomycetemcomitans / physiology
  • Analysis of Variance
  • Bacterial Adhesion*
  • Bacteroidaceae / physiology
  • Collagen*
  • Colony Count, Microbial
  • Fusobacterium nucleatum / physiology
  • Guided Tissue Regeneration, Periodontal*
  • Membranes, Artificial*
  • Pilot Projects
  • Polyglactin 910
  • Polytetrafluoroethylene
  • Porphyromonas gingivalis / physiology
  • Streptococcus mutans / physiology

Substances

  • Membranes, Artificial
  • Polyglactin 910
  • Polytetrafluoroethylene
  • Collagen