Mechanism of 3-(glutathion-S-yl)-benzidine formation

Toxicol Appl Pharmacol. 1994 Apr;125(2):256-63. doi: 10.1006/taap.1994.1071.

Abstract

The formation of thioether conjugates is an important mechanism for inactivation of carcinogens. 3-(Glutathion-S-yl)-benzidine (BZ-SG) formation prevents benzidinediimine and peroxidase-mediated benzidine binding to DNA. Benzidinediimine is the two-electron oxidized product of benzidine thought to be the reactive intermediate involved in peroxidase-mediated binding of benzidine to DNA. Diimine interacts with benzidine to form a dimeric complex known as the charge-transfer complex. The latter is in equilibrium with the cation radical. This study evaluated the mechanism by which BZ-SG forms. Benzidinediimine was synthesized and used to study the formation of BZ-SG. With 0.05 mM benzidinediimine, BZ-SG formation was optimum at pH 4.5 and with glutathione at 0.05 to 0.1 mM. By monitoring specific absorption spectra, the reduction of benzidinediimine at pH 4.5 was evaluated. The t1/2 for diimine decay (425 nm) and maximum absorbance of the charge-transfer complex (600 nm) were each at approximately 5 min. Within 10 min, the maximum amount of benzidine had formed from diimine. BZ-SG formation followed the decay of diimine. The relationship between benzidinediimine and benzidine, with respect to BZ-SG formation, was assessed at a fixed concentration of glutathione (0.05 mM) and a fixed total concentration of amine and diimine (0.05 mM). In three separate experiments, each of these three components was radiolabeled independent of the other two components. Experiments with [3H]glutathione indicated that conjugate formation was dependent upon diimine, and not benzidine. With [3H]benzidinediimine or [3H]benzidine, two different calculations were necessary to assess conjugate formation. For [3H]benzidinediimine, the calculation considered that only the radiolabeled diimine formed conjugate, while with [3H]benzidine, a specific activity calculation was necessary to demonstrate that conjugate formation was dependent upon diimine. With 0.05 mM [3H]benzidine, horseradish peroxidase-catalyzed formation of BZ-SG was optimum between 0.05 and 0.0625 mM H2O2. The latter is consistent with conversion of benzidine to diimine before formation of BZ-SG. Specific inhibitors and the absence of oxygen uptake indicated the lack of involvement of cation, thiyl, and carbon-centered radicals. The results are consistent with the existence of the charge-transfer complex and with benzidinediimine reacting with glutathione to form BZ-SG.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Benzidines / chemistry*
  • Benzidines / metabolism
  • DNA / metabolism
  • Free Radicals / analysis
  • Glutathione / chemistry*
  • Horseradish Peroxidase
  • Oxygen / metabolism
  • Spectrophotometry

Substances

  • Benzidines
  • Free Radicals
  • benzidine
  • benzidine-4,4'-diimine
  • DNA
  • Horseradish Peroxidase
  • Glutathione
  • Oxygen