Endogenous lipopolysaccharide has been implicated as a cofactor in the hepatocellular injury and death resulting from toxic liver injury. To prevent this lipopolysaccharide-induced injury and to further understand the mechanism of this effect, an anti-lipopolysaccharide antibody was administered to rats in which toxic hepatocellular injury was induced. Rats were given the hepatotoxin galactosamine together with an isotypic control antibody B55 or the anti-lipopolysaccharide antibody E5. E5 treatment resulted in reductions of serum AST levels of 43% at 36 hr (p < 0.02) and 60% at 48 hr (NS) after galactosamine administration. These decreases in AST values were accompanied by diminished histological evidence of injury and inflammation. In carbon tetrachloride-induced liver injury, E5 similarly reduced serum AST levels at 36 and 48 hr by 47% (p < 0.04) and 54% (p < 0.03), respectively. E5 treatment was equally effective in reducing AST levels 48 hr after administration of carbon tetrachloride, whether the initial dose of antibody was given 1 hr before or 3 or 6 hr after the administration of this toxin. To understand the mechanism of this E5 effect, the activation of the toxic cytokine tumor necrosis factor-alpha and the chemotactic cytokine monocyte chemoattractant protein 1 was examined by Northern-blot analysis of RNA from rat livers after galactosamine-induced injury and treatment with B55 or E5. Despite E5's efficacy in reducing hepatocellular damage, E5 treatment did not affect the timing or magnitude of tumor necrosis factor-alpha or monocyte chemoattractant protein 1 activation during galactosamine-induced injury.(ABSTRACT TRUNCATED AT 250 WORDS)