We evaluated the pharmacokinetics and therapeutic efficacies of piperacillin and tazobactam, a beta-lactamase inhibitor, given either alone or in different combinations (80:10, 200:10, and 80:25 mg/kg/h), in experimental meningitis due to a strain of Klebsiella pneumoniae producing the TEM-3 extended-spectrum beta-lactamase. Treatment was administered intravenously as a 7-h constant infusion preceded by a bolus of 20% of the total dose. The mean (+/- standard deviation) rates of penetration into the cerebrospinal fluid (CSF) of infected animals were 6.7 +/- 3.9% for piperacillin given alone and 36.3 +/- 21.9% for tazobactam given alone. Combination treatment significantly magnified the concentration of either drug in CSF. Concentrations of bacteria in CSF increased throughout therapy in animals given either drug alone, even at high dosages. In animals given the combination at dosages of 80:10 and 200/10 mg/kg/h, only a suboptimal reduction of CSF bacterial titers was obtained in vivo, i.e. -0.49 +/- 0.34 and -0.73 +/- 0.49 log CFU/ml/h, respectively. An increase in the tazobactam dosage within the combination (80:25 mg/kg/h) was required in order to obtain a significantly faster elimination of viable organisms from the CSF (-0.97 +/- 0.35 log CFU/ml/h). The study shows that tazobactam is able to provide effective protection against piperacillin hydrolysis by the TEM-3 enzyme within the CSF. Appropriate dosage regimens of various beta-lactam-tazobactam combinations may deserve comparative studies in experimental meningitis caused by organisms producing extended-spectrum beta-lactamases.