Gene expression of GLUT3 glucose transporter regulated by glucose in vivo in mouse brain and in vitro in neuronal cell cultures from rat embryos

Biochem J. 1994 May 15;300 ( Pt 1)(Pt 1):125-31. doi: 10.1042/bj3000125.

Abstract

This study was designed to determine whether glucose regulates the gene expression of glucose transporter GLUT3 in neurons. We examined the regulation of GLUT3 mRNA by glucose in vivo in mouse brain and in vitro by using neuronal cultures from rat embryos. Hypoglycaemia (< 30 mg/dl), produced by 72 h of starvation, increased GLUT3 mRNA in mouse brain by 2-fold. Hybridization studies in situ demonstrated that hypoglycaemia-induced increases in GLUT3 mRNA expression were observed selectively in brain regions including the hippocampus, dentate gyrus, cerebral cortex and piriform cortex, but not the cerebellum. Primary neuronal cultures from rat embryos deprived of glucose for 48 h also showed an increase (4-fold over control) in GLUT3 mRNA, indicating that glucose can directly regulate expression of GLUT3 mRNA. In contrast with hypoglycaemia, hyperglycaemia produced by streptozotocin did not alter the expression of GLUT3 mRNA. We also confirmed previous findings that hypoglycaemia increases GLUT1 mRNA expression in brain. The increase in GLUT1 expression was probably limited to the blood-brain barrier in vivo, since GLUT1 mRNA could not be detected in neurons of the mouse cerebrum. Thus we conclude that up-regulation of neuronal GLUT3 in response to glucose starvation represents a protective mechanism against energy depletion in neurons.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / metabolism*
  • Cells, Cultured
  • Embryo, Mammalian
  • Gene Expression Regulation / drug effects*
  • Glucose / pharmacology*
  • Glucose Transporter Type 1
  • Glucose Transporter Type 3
  • Immunohistochemistry
  • In Situ Hybridization
  • Mice
  • Mice, Inbred C57BL
  • Monosaccharide Transport Proteins / genetics*
  • Nerve Tissue Proteins*
  • Neurons / cytology
  • Neurons / metabolism*
  • RNA, Messenger / metabolism
  • Rats

Substances

  • Glucose Transporter Type 1
  • Glucose Transporter Type 3
  • Monosaccharide Transport Proteins
  • Nerve Tissue Proteins
  • RNA, Messenger
  • Slc2a1 protein, mouse
  • Slc2a1 protein, rat
  • Slc2a3 protein, mouse
  • Slc2a3 protein, rat
  • Glucose