A series of polyanionic natural or semi-synthetic polymers (polygalacturonic acid, hyaluronic acid, carboxymethylamylose, carboxymethylchitin, chondroitin sulfate, heparan sulfate and mesoglycan) were evaluated as potential mucoadhesive carriers for ophthalmic drugs. Solutions containing cyclopentolate (CY) or pilocarpine (PI) as salts (or polyanionic complexes) with the acidic polymers, all showing a low viscosity, were tested for miotic (resp. mydriatic) activity in albino rabbits. In the case of some polymeric complexes, small but significant increases of the areas under the activity vs. time curves (AUC) over reference cyclopentolate hydrochloride (CYHC1) or pilocarpine nitrate (PINO3) vehicles, and significant AUC decreases after removal of precorneal mucin by treatment with N-acetylcysteine were observed. A correlation was found between these data, considered indicative of the occurrence of a mucoadhesive interaction "in vivo", and "in vitro" viscometric data expressing the polymers-mucin force of interaction. The advantages and limitations of the mucoadhesive non-viscous approach in the formulation of ophthalmic vehicles are presented and discussed.