An antibacterial substance appeared within 1 day in feces of gnotobiotic rats harboring a human intestinal Peptostreptococcus strain. It disappeared when the rat bile-pancreatic duct was ligatured or when the rats ingested a trypsin inhibitor. Anaerobic cultures of the Peptostreptococcus strain in a medium supplemented with trypsin also exhibited an antibacterial activity, which was also inhibited by the trypsin inhibitor. In vitro the antibacterial substance from both feces and culture medium was active against several gram-positive bacteria, including other Peptostreptococcus spp., potentially pathogenic Clostridium spp. such as C. perfringens, C. difficile, C. butyricum, C. septicum, and C. sordellii, Eubacterium spp., Bifidobacterium spp., and Bacillus spp. Whatever the order of inoculation of the strains, a sensitive strain of C. perfringens was eliminated within 1 day from the intestine of rats monoassociated with the Peptostreptococcus strain. These findings demonstrate for the first time that very potent antibacterial substances can be produced through a mechanism involving intestinal bacteria and exocrine pancreatic secretions.