Cycle sequencing using Taq DNA polymerase has gained popularity recently due to reduced template requirements, improved signal and its ability to directly sequence PCR fragments. A major drawback to the technique is the time required for performing reactions in a block-based thermal cycler. To help cycle sequencing compete with other methods, we have modified the protocol to be performed in capillaries using an air-based thermal cycling instrument. This instrument has been developed and optimized for rapid, specific amplification of DNA by PCR. The resulting cycle sequencing methodology is faster than block-based approaches; a reaction can be completed in 25 min, compared with about 2 h in a conventional instrument. Thus, the speed of the technique is competitive with standard uncycled T7 or Taq reactions. Accuracy of the sequencing data is improved; two problem areas in the sequence obtained with a block cycler are ameliorated by the capillary methodology. This technique represents a novel approach to cycle sequencing that will further the development of capillary-based analytical methods.