The pathway for utilization of pyridine nucleotide derived reducing equivalents in the cytochrome P-450 monooxygenase systems has three major branch points. The first is a partitioning between autoxidation of a ferrous, oxygenated heme adduct and input of the second reducing equivalent required for monooxygenase stoichiometry. The second is between dioxygen bond scission and release of two-electron-reduced O2 as hydrogen peroxide. The third is between substrate hydrogen abstraction initiated by a putative higher valent iron-oxo species and reduction of this intermediate by two additional electrons to produce water in an overall oxidase stoichiometry. For all substrates investigated, the direct release of superoxide at the first branch point never competes with second electron input. In order to elucidate the aspects of molecular recognition of a substrate-P-450 complex which affect these individual branch points in the catalytic cycle, we have measured the NADH-derived reducing equivalents recovered in hydroxylated substrate, hydrogen peroxide, and water for a series of active-site mutants designed to alter the coupling of ethylbenzene hydroxylation. We find that the reaction specificity at the second and third branch points is affected by site-directed mutations that alter the topology of the binding pocket. The increased commitment to catalysis observed for all mutants suggests that active-site hydration is important in the uncoupling to form hydrogen peroxide at the second branch point. The liberation of hydrogen peroxide does not correlate with the location of the mutation in the pocket, as expected if the two-electron-reduced dioxygen-bound intermediate is not directly participating in the substrate activation step.(ABSTRACT TRUNCATED AT 250 WORDS)