We previously demonstrated that dextran-conjugated anti-IgD antibodies (alpha delta-dex) induce proliferation of small, B cell-enriched murine spleen cells (Be cells), and in the presence of IL-2, stimulate Ig secretion in vitro. We have shown that alpha delta-dex-stimulated B cells provide an in vitro model for studying B cell activation by T cell-independent type 2 (TI-2) Ag, as exemplified by the bacterial polysaccharides. We now show that highly purified resting B cells, obtained by electronic cell sorting (Bsp cells), fail to secrete Ig in the presence of alpha delta-dex + IL-2. The alpha delta-dex + IL-2-induced Ig secretory response of Bsp cells is restored upon addition of splenic non-B, non-T cells or a pure population of in vitro-generated NK cells. Similarly, pretreatment of Be cells with anti-AsGm-1 plus complement inhibits Ig secretion in response to alpha delta-dex + IL-2. An IL-2-induced NK cell supernatant (NKSN) is equally potent at stimulating Ig secretion by alpha delta-dex-activated Bsp cells, indicating that cell contact between Bsp and activated NK cells is not required for this effect. IL-2 stimulates not only NK cells, but B cells as well, since addition of anti-IL-2 + anti-IL-2R antibodies to Bsp cell cultures, in the presence of alpha delta-dex + NKSN, inhibits Ig secretion. These data describe a novel animal model for NK cell-induced B cell maturation to Ig secretion and suggest a pathway for Ig production in response to T1-2 Ag.