The mechanism by which complement fragment C5a elevates intracellular Ca2+ ([Ca2+]i) levels in two cell types, a monocytic cell line, U937, and neutrophils, has been investigated by the use of fluorometric and radiometric techniques. In U937 cells the influx of extracellular Ca2+ can be distinguished from the release of intracellular Ca2+ stores in terms of dose-responsiveness to C5a and sensitivity to pertussis-toxin poisoning. This suggests that the mechanism of Ca2+ influx in these cells is at least partially independent of both the production of inositol phosphates and elevation of internal Ca2+ concentration. The C5a-stimulated influx of 45Ca2+ into U937 cells is inhibited by a series of metal ions (Zn2+ > Co2+ > Mn2+ > Sr2+ approximately equal to Ni2+ > La3+). The stimulated influx of Ca2+ into neutrophils is inhibited differently (Ni2 >> Co2+ > Zn2+ approximately equal to La3+ > Mn2+ approximately equal to Sr2+), is less sensitive to C5a and both the influx of extracellular Ca2+ and the release of intracellular stores are equally sensitive to pertussis toxin treatment. Taken together these results indicate that [Ca2+]i is controlled in U937 monocytes by mechanisms distinct from those which appear to operate in other myeloid cells, such as neutrophils, stimulated with C5a and formylpeptide.