To quantify the effect of the apolipoprotein (apo) E polymorphism on the magnitude of postprandial lipemia, we have defined its role in determining the response to a single high-fat meal in a large sample of (N = 474) individuals taking part in the biethnic Atherosclerosis Risk in Communities Study. The profile of postprandial response in plasma was monitored over 8 h by triglyceride, triglyceride-rich lipoprotein (TGRL)-triglyceride, apo B-48/apo B-100 ratio, and retinyl palmitate concentrations, and the apo E polymorphism was determined by DNA amplification and digestion. The frequency of the apo E alleles and their effects on fasting lipid levels in this sample were similar to those reported elsewhere. Postprandial plasma retinyl palmitate response to a high-fat meal with vitamin A was significantly different among apo E genotypes, with delayed clearance in individuals with an epsilon 2 allele, compared with epsilon 3/3 and epsilon 3/4 individuals. In the sample of 397 Caucasians, average retinyl palmitate response was 1,489 micrograms/dl in epsilon 2/3 individuals, compared with 1,037 micrograms/dl in epsilon 3/3 individuals and 1,108 micrograms/dl in epsilon 3/4 individuals. The apo E polymorphism accounted for 7.1% of the interindividual variation in postprandial retinyl palmitate response, a contribution proportionally greater than its well-known effect on fasting LDL-cholesterol. However, despite this effect on postprandial retinyl palmitate, the profile of postprandial triglyceride response was not significantly different among apo E genotypes. The profile of postprandial response was consistent between the sample of Caucasians and a smaller sample of black subjects. While these data indicate that the removal of remnant particles from circulation is delayed in subjects with the epsilon 2/3 genotype, there is no reported evidence that the epsilon 2 allele predisposes to coronary artery disease (CAD). The results of this study provide not only a reliable estimate of the magnitude of the effect of the apo E polymorphism on various measurements commonly used to characterize postprandial lipemia, but also provide mechanistic insight into the effects of the apo E gene polymorphism on postprandial lipemia and CAD.