Plants that utilize the highly efficient C4 photosynthetic pathway possess two types of specialized leaf cells, the mesophyll and bundle sheath. In mature leaves of amaranth, a dicotyledonous C4 plant, ribulose 1,5-bisphosphate carboxylase (Rubisco) is localized specifically to the chloroplasts of bundle sheath cells, and is not present in the chloroplasts of mesophyll cells. The cell type-specific expression of the chloroplast-encoded Rubisco large subunit (rbcL) gene, and other representative chloroplastic genes, was investigated by using separated bundle sheath and mesophyll chloroplasts prepared from mature amaranth leaves. One-dimensional SDS-polyacrylamide gel electrophoresis revealed several differences in the polypeptide compositions of the two chloroplast types. Western analysis demonstrated that, as in the intact leaves, the Rubisco LSU polypeptide was present only in chloroplast preparations from bundle sheath cells. Pyruvate orthophosphate dikinase (PPdK), a nuclear-encoded chloroplastic enzyme, was found only in the mesophyll chloroplast preparations. rbcL mRNA was present only in the bundle sheath chloroplast preparations, whereas transcripts for the chloroplast-encoded psbA, psaA-B, and rpl2 genes were present in both chloroplast types. Although the rbcL message accumulated only in bundle sheath chloroplasts, run-on transcription analysis indicated that the rbcL gene was transcribed in both bundle sheath and mesophyll chloroplast preparations. Therefore, differential rbcL gene expression in the isolated C4 chloroplasts is regulated, at least in part, at the post-transcriptional level. Possibly this control is mediated by differential processing or stabilization of the rbcL transcript.