Two-dimensional crystals of yeast RNA polymerase I dimers were obtained upon interaction with positively charged lipid layers. A three-dimensional surface model of the enzyme was determined by analyzing tilted crystalline areas and by taking advantage of the non-crystallographic internal symmetry of the dimer to correct for the missing viewing directions. The structure shows, at approximately 3 nm resolution, an irregularly shaped molecule 11 nm x 11 nm x 15 nm in size characterized by a 3 nm wide and 10 nm long groove which constitutes a putative DNA binding site. The overall structure is similar to the Escherichia coli holo enzyme and the yeast RNA polymerase II delta 4/7 structures. The most remarkable structural feature is a finger-shaped stalk which partially occludes the entrance of the groove and forms a 2.5 nm wide channel. We discuss the possible location of the catalytic centre and of the carboxy-terminal region of the beta-like subunit in the channel. The interference of different DNA fragments with RNA polymerase dimerization and crystallization indicates the orientation of the template in the putative DNA binding groove.