This study assessed the reach to grasp movement and its adaptive response to a perturbation of object size. In blocked trials, subjects (n = 12) were instructed to reach 35 cm to grasp and lift a small- (0.7 cm) or large-diameter (8 cm) cylinder. Under an unconstrained condition (condition 1), no instructions as to the type of grasp to adopt were given. Subjects thus naturally used a precision grip (PG) for the small cylinder and whole hand prehension (WHP) for the large cylinder. Under condition 2, subjects were instructed to utilize a PG for grasps of both the large and small cylinders. For condition 3, the instruction was to use WHP irrespective of object size. Kinematic organization was determined with analysis of the recordings of active markers placed on the wrist, thumb, and three fingers. For condition 1 the results showed a temporal arrangement of both components (transport and manipulation) which differed from that of conditions 2 and 3. In perturbed trials, illumination shifted from the small to large cylinder or vice versa. With condition 1, subjects automatically switched from one grasp to another with no or little increase of movement duration. This was generally achieved by an earlier temporal setting of peak wrist deceleration. For conditions 2 and 3, where a change of aperture was required, movement duration was prolonged without adaptation of earlier transport component parameters. It is concluded that the adaptive responses to a change of distal patterning also affect the organization of the proximal component. Assessment of grasps constrained by instructions may lead to interpretations of central control of the reach to grasp movement which differ from those obtained by assessing more natural prehensile patterns.