Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons

J Neurochem. 1993 Aug;61(2):673-82. doi: 10.1111/j.1471-4159.1993.tb02172.x.

Abstract

Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and tau, is a prominent aspect of Alzheimer's disease. MAP2 and tau are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and tau concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and tau dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Cerebral Cortex / cytology
  • Cerebral Cortex / drug effects
  • Cerebral Cortex / metabolism*
  • Electrophoresis, Polyacrylamide Gel
  • Embryo, Mammalian
  • Ethers, Cyclic / pharmacology*
  • Humans
  • Immunoblotting
  • Microtubule-Associated Proteins / metabolism*
  • Nerve Degeneration*
  • Neuroblastoma
  • Neurons / cytology
  • Neurons / drug effects
  • Neurons / metabolism*
  • Okadaic Acid
  • Phosphorylation
  • Rats
  • Tumor Cells, Cultured
  • tau Proteins / metabolism*

Substances

  • Ethers, Cyclic
  • Microtubule-Associated Proteins
  • tau Proteins
  • Okadaic Acid