This study provides the first empirical evidence for the conservation of the ets proto-oncogene transcription factor family throughout the Metazoa. Using the polymerase chain reaction with degenerate primers corresponding to conserved sequences within the ETS DNA-binding domain, we have detected ets genes in a range of lower metazoans, including sponges, ctenophores, anemones, flatworms and nematodes, and in several higher invertebrate metazoans. Many of these sequences are significantly divergent from the original v-ets-1 oncogene, although most can be aligned with recently defined groups within the ets gene family. Multiple ETS domain sequences were detected in a number of the lower metazoan species, providing evidence for the existence of an ets multigene family at the earliest stages of metazoan evolution. In contrast, we were unable to detect any ETS sequences in fungal, plant or several protozoan DNAs. Our findings suggest that the duplication and divergence of ets proto-oncogenes responsible for generating the multigene family occurred concomitantly with the development of metazoan animals. In addition, these data corroborate other recent molecular evidence in providing strong support for the monophyletic origin of all multicellular animals, including sponges.