Insulin-like growth factor I activates the invasion suppressor function of E-cadherin in MCF-7 human mammary carcinoma cells in vitro

Br J Cancer. 1993 Aug;68(2):282-9. doi: 10.1038/bjc.1993.329.

Abstract

The calcium-dependent cell-cell adhesion molecule E-cadherin has been shown to counteract invasion of epithelial neoplastic cells. Using three monoclonal antibodies, we have demonstrated the presence of E-cadherin at the surface of human MCF-7/6 mammary carcinoma cells by indirect immunofluorescence coupled to flow cytometry and by immunocytochemistry. Nevertheless, MCF-7/6 cells failed to aggregate in a medium containing 1.25 mM CaCl2, and they were invasive after confrontation with embryonic chick heart fragments in organ culture. Treatment of MCF-7/6 cells with 0.5 microgram ml-1 insulin-like growth factor I (IGF-I) led to homotypic aggregation within 5 to 10 min and inhibited invasion in vitro during at least 8 days. The effect of IGF-I on cellular aggregation was insensitive to cycloheximide. However, monoclonal antibodies that interfered with the function of either the IGF-I receptor (alpha IR3) or E-cadherin (HECD-1, MB2) blocked the effect of IGF-I on aggregation. The effects of IGF-I on aggregation and on invasion could be mimicked by 1 microgram ml-1 insulin, but not by 0.5 microgram ml-1 IGF-II. The insulin effects were presumably not mediated by the IGF-I receptor, since they could not be blocked by an antibody against this receptor (alpha IR3). Our results indicate that IGF-I activates the invasion suppressor role of E-cadherin in MCF-7/6 cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal
  • Breast Neoplasms / pathology
  • Cadherins / analysis
  • Cadherins / metabolism*
  • Cell Adhesion*
  • Cell Division / drug effects
  • Electrophoresis, Polyacrylamide Gel
  • Female
  • Flow Cytometry
  • Humans
  • Immunoblotting
  • Immunohistochemistry
  • Insulin / pharmacology
  • Insulin-Like Growth Factor I / pharmacology*
  • Insulin-Like Growth Factor II / pharmacology
  • Kinetics
  • Neoplasm Invasiveness
  • Tumor Cells, Cultured

Substances

  • Antibodies, Monoclonal
  • Cadherins
  • Insulin
  • Insulin-Like Growth Factor I
  • Insulin-Like Growth Factor II