The endothelium of the coronary vascular system has been described in the literature as originating from different sources, varying from aortic endothelium for the main coronary stems, endocardium for the intramyocardial network, and sinus venosus lining for the venous part of the coronary system. Using an antibody against quail endothelial cells (alpha-MB1), we investigated the development of the coronary vascular system in the quail (Hamburger and Hamilton stages 15 to 35) and in a series of 36 quail-chicken chimeras. In the chimeras, pieces of quail epicardial primordium and/or liver tissue were transplanted into the pericardial cavity of a chicken host. The results showed that the coronary vascular endothelial distribution closely followed the formation of the epicardial covering of the heart. However, pure epicardial primordium transplants did not lead to endothelial cell formation, whereas a liver graft with or without an epicardial contribution did have this capacity. The first endothelial cells were seen to reach the heart at the sinus venosus region, subsequently spreading through the inner curvature to the atrioventricular sulcus and the outflow tract and, last of all, over the ventricular surfaces. At these sites, the precursor cells and small vessels were seen to invade the sinus venosus wall, the ventricular and atrial myocardium, and the mesenchymal border of the aortic orifice. Connections with the endocardium of the heart tube were only observed in the right ventricular outflow region. Initially, the connections with the aortic endothelium were multiple, but later in development only two of these connections persisted to form the proximal part of the two main coronary arteries. Connections to the pulmonary orifice were never observed. Our transplantation data showed that the entire coronary endothelial vasculature originated from an extracardiac source. Moreover, using the developing subepicardial layer as a matrix, we showed that the endothelial cells reached the heart from the liver region. Ingrowth into the various cardiac segments was also observed. Implications for the relation to specific congenital cardiac malformations are discussed.