This study was designed to determine the age-related changes in the endothelium-dependent hyperpolarization to acetylcholine (ACh) and its contribution to relaxation in the isolated mesenteric artery from normotensive and hypertensive rats. Membrane potentials and contractions were recorded in arteries from male Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) that were 5-6 wk old (young), 6-8 mo old (adult), and 20-26 mo old (aged). Endothelium-dependent hyperpolarizations produced by ACh, applied both at the resting state of the membrane and under conditions of depolarization with norepinephrine (10(-5) M), were markedly impaired in aged WKY rats, adult SHR, and aged SHR. Endothelium-dependent relaxations to ACh in arterial rings precontracted with 10(-5) M norepinephrine were also impaired in aged WKY rats, adult SHR, and aged SHR even in the presence of indomethacin. Furthermore, in these rats, N omega-nitro-L-arginine, an inhibitor of nitric oxide formation, showed potent inhibitory effects on the relaxations, whereas the 20 mM high K+ solution that reduces hyperpolarization had less pronounced effects. Hyperpolarizations and relaxations to cromakalim (10(-5) M), a K(+)-channel opener, were on the whole preserved in aged rats. It would thus appear that the endothelium-dependent hyperpolarization to ACh is reduced with aging as well as by hypertension, and this would, in part, account for the impaired relaxation to ACh in arteries of both aged rats and hypertensive rats.