The cytokines are important components of the brain-immune axis. Recent work has shown that [125I]IL-1 alpha and [125I]IL-1 beta are transported from the blood into the brain by a saturable system. Here we show that murine tumor necrosis factor alpha (mTNF alpha) labeled with 125I (I-mTNF alpha) crosses the blood-brain barrier (BBB) after i.v. injection by a transport system different from that for the interleukins. Self inhibition with mTNF alpha showed that this transport system was saturable, and lack of inhibition by IL-1 alpha, IL-1 beta, IL-6, or MIP-1 alpha showed selectivity of the system. High performance liquid chromatography (HPLC) of the radioactivity recovered from brain and from cerebrospinal fluid after the i.v. injection of I-mTNF alpha showed that the cytokine crossed the BBB largely in intact form. Capillary depletion showed that the accumulation of I-mTNF alpha in the cerebral cortex was due to passage across the BBB rather than to sequestration by capillaries. Transport rate was not changed by acute treatment with the neurotoxin aluminium or by acute and chronic treatment with the cationic chelator deferoxamine, but it was more than three times faster in neonatal rats. Efflux of I-mTNF alpha from the brain was slower than would have been predicted based on reabsorption of cerebrospinal fluid, suggesting that TNF alpha is sequestered by the brain. The BBB was not disrupted by up to 50 micrograms kg-1 of mTNF alpha i.v. in either adult mice or neonatal rats as assessed by the BBB's impermeability to radioactively labeled albumin.(ABSTRACT TRUNCATED AT 250 WORDS)