Since their first description as anomalous high affinity diazepam binding sites in rat peripheral tissues, the peripheral-type benzodiazepine receptor (PBR) has been increasingly studied to better understand nonneural effects of the benzodiazepines. The mammalian PBR is ubiquitously distributed with high concentrations in the outer mitochondrial membrane of secretory tissues. In regions of the brain, the density of PBR can equal or exceed the density of central-type benzodiazepine receptors. High affinity PK 11195 binding is diagnostic for the receptor while the affinity for benzodiazepines is species dependent. Recent cDNA cloning of a PBR component, the isoquinoline binding protein (IBP), shows no apparent sequence homology with any GABAA receptor subunits known to comprise central benzodiazepine receptor subtypes. The PBR seems at best only distantly related to CBRs. Recent advances in the pharmacology, biochemistry and molecular biology of the PBR are reviewed.