Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release

Biochim Biophys Acta. 1993 Sep 13;1178(3):235-42. doi: 10.1016/0167-4889(93)90199-y.

Abstract

Cyclic ADP-ribose (cADPR) is a naturally-occurring metabolite of NAD+ that is as effective as inositol trisphosphate in mobilizing intracellular Ca2+. A series of analogs modified at the 8-position of the adenine group were synthesized for the investigation of the relationship between the structure of the metabolite and its Ca(2+)-mobilizing activity. Substitution with an amino group at the 8-position of the adenine ring produced an antagonist. The 1H-NMR spectrum of 8-amino-cADPR showed characteristics of that of cADPR and confirmed the replacement of the 8-proton. By itself, 8-amino-cADPR (150 nM) did not induce Ca2+ release from sea-urchin-egg homogenates but totally blocked cADPR (135 nM) from doing so. The effect was reversible, since high concentrations of cADPR could overcome the inhibition. Addition of 8-amino-cADPR to egg homogenates during the cADPR-induced Ca2+ release blocked the release immediately, demonstrating the effectiveness of the antagonist. Measurements of [32P]cADPR binding to its microsomal binding site showed that 8-amino-cADPR was as effective as cADPR itself in competing for the binding site. In addition to blocking cADPR from releasing Ca2+, 8-amino-cADPR also inhibited cADPR from potentiating Ca(2+)-release induced by either divalent cations or by caffeine. Two other 8-substituted analogs were also synthesized. Both 8-Br- and 8-azido-cADPR were also antagonists, although with less potency than 8-amino-cADPR. These results show that alterations at the 8-position of the adenine group do not inhibit cADPR from binding to its receptor but do eliminate the ability of the metabolite to activate the Ca(2+)-release mechanism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Diphosphate Ribose / analogs & derivatives*
  • Adenosine Diphosphate Ribose / antagonists & inhibitors
  • Adenosine Diphosphate Ribose / chemical synthesis
  • Adenosine Diphosphate Ribose / chemistry
  • Animals
  • Binding Sites
  • Calcium / metabolism*
  • Calcium Channel Blockers / chemical synthesis*
  • Cyclic ADP-Ribose
  • Cyclic AMP / analogs & derivatives
  • Cyclic AMP / chemistry
  • Cyclic AMP / pharmacology
  • Magnetic Resonance Spectroscopy
  • Oocytes / metabolism
  • Sea Urchins

Substances

  • Calcium Channel Blockers
  • Cyclic ADP-Ribose
  • 8-aminoadenosine cyclic 3',5'-(hydrogen phosphate) 5'-ribofuranosyl ester
  • Adenosine Diphosphate Ribose
  • Cyclic AMP
  • Calcium