The cellular localization of mRNA for neurotrophin-4 (NT-4), a novel neurotrophic factor, in the developing whisker follicles and skin of the embryonic rat is demonstrated by in situ hybridization. Levels of NT-4 mRNA in the whisker pad decrease between embryonic day 13 (E13) and E20, correlating in time with the onset of naturally occurring neuronal death in the innervating trigeminal ganglion. In addition to NT-4, brain-derived neuotrophic factor (BDNF) mRNA is also shown to be expressed in the rat embryonic whisker follicles although in a different cellular localization, which combined with previous data on the expression of NGF and NT-3 mRNAs, shows that all four neurotrophins are expressed during development of this structure. NT-4 protein is shown to elicit neurite outgrowth from explanted embryonic trigeminal ganglia and to promote neuronal survival of dissociated trigeminal ganglion neurons when cultured during the phase of cell death. NT-4 and NT-3 mainly support different neuronal subpopulations, whereas some NT-4-responsive cells appear to respond also to NGF and BDNF. Analysis of mRNAs for members of the Trk family of neurotrophin receptors in neurons rescued by different neurotrophins demonstrates the presence of distinct neuronal subpopulations that respond to specific combinations of these factors. Based on these results we propose that NT-4, together with the other three neurotrophins, orchestrate the innervation of the different structures of the developing whisker pad by the trigeminal ganglion, acting as target-derived neurotrophic factors for different subpopulations of trigeminal ganglion neurons.