Hypervariable segments of the control region of mtDNA as well as part of the cytochrome b gene of Dunlins were amplified with PCR and sequenced directly. The 910 base pairs (bp) obtained for each of 73 individuals complete another of the few sequencing studies that examine the global range of a vertebrate species. A total of 35 types of mtDNA were detected, 33 of which were defined by the hypervariable-control-region segments. Thirty of the latter were specific to populations of different geographic origin in the circumpolar breeding range of the species. The remaining three types indicate dispersal between populations in southern Norway and Siberia, but female-mediated flow of mtDNA apparently is too low to overcome the effects of high mutation rates of the control-region sequences, as well as population subdivision associated with historical range disjunctions. A genealogical tree relating the types grouped them into five populations: Alaska, West Coast of North America, Gulf of Mexico, western Europe, and the Taymyr Peninsula. The Dunlin is thus highly structured geographically, with measures of mutational divergence approaching 1.0 for fixation of alternative types in different populations. High diversity of types within populations as well as moderate long-term effective population sizes argue against severe population bottlenecks in promoting this differentiation. Instead, population fragmentation in Pleistocene refuges is the most plausible mechanism of mtDNA differentiation but at a much earlier time scale than suggested previously with morphometric data.