A 3.4 kb EcoRI fragment, cloned in E. coli, that carries part of a cluster of genes encoding arginine biosynthetic functions of the thermophilic bacterium Bacillus stearothermophilus, was sequenced on both strands. The sequence consists of a truncated argC gene, an argJ region encoding a polypeptide with both N-acetylglutamate synthase and ornithine acetyltransferase activities, the argB gene and the N-terminal part of argD. The argB gene encodes a 258-amino-acid polypeptide with a deduced M(r) of 26918. A very high and thermostable N-acetylglutamate 5-phosphotransferase activity was detected in extracts of E. coli arg B mutants transformed with the 3.4 kb fragment on a plasmid. A polypeptide band of M(r) 27,000 was detected by SDS-PAGE of heat-treated extract from such a strain. Both N-acetylglutamate synthase and ornithine acetyltransferase are encoded by the same 1290 bp open reading frame. The deduced sequence of 410 amino acids corresponds to a peptide of M(r) 43,349. The subcloned B. stearothermophilus argJ can complement a double argA argE E. coli mutant to prototrophy. Gel-filtration of a heat-treated extract of the complemented double mutant E. coli host showed that N-acetylglutamate synthase and ornithine acetyltransferase activities co-elute in a single peak corresponding to M(r) 110,000. Both activities were also heat-inactivated at the same temperature and strongly inhibited by ornithine. These results suggest that both activities can be ascribed to a single protein.