Corticotropin-releasing factor (CRF), when administered directly into the CNS, can have activating properties on behaviour and can enhance behavioural responses to stress. CRF injected intraventricularly produces a dose-dependent increase in locomotor activity and increased responsiveness to an acoustic startle stimulus. However, this profile of activation changes to enhanced suppression of behaviour in stressful situations and includes increased freezing, increased conditioned suppression, increased conflict, decreased feeding and decreased behaviour in a novel open field. These effects of CRF are independent of the pituitary-adrenal axis and can be reversed by the CRF antagonist alpha-helical CRF(9-41). More importantly, the CRF antagonist can also reverse many behavioural responses to stressors. alpha-Helical CRF(9-41) reverses stress-induced fighting behaviour, stress-induced freezing, stress-induced suppression of feeding, stress-induced decreases in exploration of an elevated plus maze, fear-potentiated startle and the development of conditioned suppression. Intracerebral microinjections suggest that the amygdala may be an important site for the anti-stress effects of alpha-helical CRF(9-41). These results suggest that endogenous CRF systems in the CNS may have a role in mediating behavioural responses to stress and further suggest that CRF in the brain may function as a fundamental behavioural activating system. This CRF system may be particularly important in situations where an organism must mobilize not only the pituitary-adrenal system but also the CNS in response to environmental challenge.