Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct mental retardation disorders caused by a deficiency of paternal (PWS) or maternal (AS) contributions for chromosome 15 by either deletion or uniparental disomy (UPD). To further study the molecular mechanisms involved in these disorders and to improve molecular diagnostic methods, we have isolated three dinucleotide repeat markers in the PWS/AS critical region. An Alu-CA PCR method was used to isolate CA-repeat markers directly from yeast artificial chromosome (YAC) clones identified by probes IR4-3R (D15S11), LS6-1 (D15S113), and GABAA receptor B3 (GABRB3). Three markers with 6-11 alleles and 73-83% heterozygosities were identified and analyzed by multiplex PCR. Gene-centromere mapping was performed on a panel of ovarian teratomas of known meiotic origin, and showed the most proximal marker, IR4-3R, to be 13 cM (95% confidence limits: 7-19 cM) from the centromere of chromosome 15. Molecular diagnostic studies were performed on 20 PWS and 9 AS patients. In 17 patients with deletions, the parental origin of deletion was determined. Ten PWS patients were shown to have maternal heterodisomy. Since these markers are only 13 cM from the centromere, heterodisomy indicates that maternal meiosis I nondisjunction is involved in the origin of UPD. In contrast, two paternal disomy cases of AS showed isodisomy for all markers tested along the length of chromosome 15. This suggests a paternal meiosis II nondisjunction event (without crossing over) or, more likely, monosomic conception (due to maternal nondisjunction) followed by chromosome duplication.(ABSTRACT TRUNCATED AT 250 WORDS)