Rhodococcus equi is a facultative intracellular bacterium of macrophages that causes disease in immunocompromised individuals, particularly those with AIDS. In this report, we demonstrate that R. equi binding to mammalian cells requires complement and is mediated primarily by the leukocyte complement receptor, Mac-1. Bacteria bind to macrophages poorly unless exogenous complement is added to the incubation medium. The addition of fresh nonimmune serum, which contains no detectable antibodies to R. equi, greatly enhances bacterial binding to macrophages, whereas heat inactivation of this serum or immunological depletion of C3 from the serum reduces binding to levels only slightly higher than those of binding under serum-free conditions. Human serum depleted of C2 or C4 is fully opsonic, indicating that complement activation and fixation occur by the alternative pathway. The serum-dependent binding of rhodococci to macrophages is mediated primarily by the macrophage complement receptor type 3, Mac-1 (CD11b/CD18). Bacteria do not bind to fibroblastoid or epithelial cells that lack this receptor. Most of the bacterial binding to macrophages is inhibited by a monoclonal antibody to Mac-1 but is unaffected by a monoclonal antibody to complement receptor type 1. Furthermore, opsonized, but not unopsonized, bacteria bind to purified Mac-1 immobilized on plastic. In addition, in the presence of opsonic complement, rhodococci bind efficiently to fibroblastoid cells transfected with cloned Mac-1 but relatively poorly to cells transfected with the complement receptor type 1. Hence, R. equi fixes complement by activating the alternative complement pathway, and this fixation is a requirement for bacterial adhesion and invasion. Furthermore, complement fixation defines rhodococcal host cell tropism, since R. equi binds specifically and exclusively to cells expressing Mac-1.