A slowly inactivating potassium current in CA3 pyramidal cells of rat hippocampus in vitro

J Neurosci. 1996 Jan 15;16(2):586-94. doi: 10.1523/JNEUROSCI.16-02-00586.1996.

Abstract

The time- and voltage-dependent properties of a slowly inactivating K+ current were investigated by using the single-electrode current- and voltage-clamp recording technique in CA3 hippocampal cells of organotypic slice cultures. After a period of prolonged hyperpolarization, the onset of action-potential discharge in response to depolarizing current injection was delayed by several seconds. The conductances underlying this delay were identified in voltage-clamp recordings. A biphasically decaying outward current was evoked when the membrane potential was stepped back to -60 mV after a 30 sec period of hyperpolarization. The fast component was identified as the previously described D-current and was blocked by 100 microM 4-aminopyridine (4-AP). The slow component, which we refer to as IK(slow), appeared to be mediated by K+ ions, because its reversal potential shifted in a Nernstian manner with changes in extracellular K+ concentration. It decayed with a time constant of 7.5 sec and required a hyperpolarizing prepulse below -95 mV for 5.5 sec for 50% recovery from inactivation. IK(slow) was found to be voltage-dependent, with 50% activation occurring at -65 mV and 50% steady-state inactivation occurring at -84 mV. It displayed minimal or no sensitivity to the K(+)-channel blockers 4-AP (0.1-5 mM), Cs+ (1 mM), tetraethylammonium (10-50 mM), Ba2+ (1 mM), dendrotoxin-alpha (5-10 microM), charybdotoxin (0.5-2.5 microM), or glibenclamide (5-10 microM) and was not affected by preventing increases in intracellular Ca2+ concentration with Ca2+ chelators. IK(slow) was reduced by activation of metabotropic glutamatergic and cholinergic receptors. In summary, the biophysical characteristics of IK(slow) suggest a role in determining discharge onset after a period of membrane hyperpolarization, and its modulation by G-protein-coupled receptors reveals an additional function for these receptors in the control of cellular excitability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4-Aminopyridine / pharmacology
  • Action Potentials / physiology
  • Animals
  • Cells, Cultured
  • Electrophysiology
  • Hippocampus / physiology*
  • In Vitro Techniques
  • Kinetics
  • Methacholine Chloride / pharmacology
  • Muscarine / pharmacology
  • Patch-Clamp Techniques
  • Potassium Channels / physiology*
  • Pyramidal Cells / physiology*
  • Rats

Substances

  • Potassium Channels
  • Methacholine Chloride
  • Muscarine
  • 4-Aminopyridine