The calciuric response after an oral calcium load (1000 mg elemental calcium together with a standard breakfast) was studied in 13 healthy male controls and 21 recurrent idiopathic renal calcium stone formers, 12 with hypercalciuria (UCa x V > 7.50 mmol/24 h) and nine with normocalciuria. In controls, serum 1,25(OH)2 vitamin D3 (calcitriol) remained unchanged 6 h after oral calcium load (50.6 +/- 5.1 versus 50.9 +/- 5.0 pg/ml), whereas it tended to increase in hypercalciuric (from 53.6 +/- 3.2 to 60.6 +/- 5.4 pg/ml, P = 0.182) and fell in normocalciuric stone formers (from 45.9 +/- 2.6 to 38.1 +/- 3.3 pg/ml, P = 0.011). The total amount of urinary calcium excreted after OCL was 2.50 +/- 0.20 mmol in controls, 2.27 +/- 0.27 mmol in normocalciuric and 3.62 +/- 0.32 mmol in hypercalciuric stone formers (P = 0.005 versus controls and normocalciuric stone formers respectively); it positively correlated with serum calcitriol 6 h after calcium load (r = 0.392, P = 0.024). Maximum increase in urinary calcium excretion rate, delta Ca-Emax, was inversely related to intact PTH levels in the first 4 h after calcium load, i.e. more pronounced PTH suppression predicted a steeper increase in urinary calcium excretion rate. Twenty-four-hour urine calcium excretion rate was inversely related to the ratio of delta calcitriol/deltaPTHmax after calcium load (r = -0.653, P = 0.0001), indicating that an abnormally up-regulated synthesis of calcitriol and consecutive relative PTH suppression induce hypercalciuria.(ABSTRACT TRUNCATED AT 250 WORDS)