Regulation of elastin synthesis in pathological states

Ciba Found Symp. 1995:192:81-94; discussion 94-9. doi: 10.1002/9780470514771.ch5.

Abstract

Elastin is rapidly deposited during late gestation in resilient tissues such as the arteries, lungs and skin owing to increased concentration of its mRNA. Pathological states can arise from congenital insufficiency or disorganization of elastin (cutis laxa). Other elastin deficiencies may be due to excess elastolysis or gene dosage effects. In the former, high turnover rates can be assessed by measurements of elastin degradation products in urine. Excess elastin accumulation by skin fibroblasts is characteristic of genetic diseases such as Buschke-Ollendorff syndrome, Hutchinson-Gilford progeria and keloid. Elastin expression is modulated by peptide growth factors, steroid hormones and phorbol esters, among which transforming growth factor beta (TGF-beta) is an especially potent up-regulator, acting largely through stabilization of mRNA. Recent evidence indicates cutis laxa fibroblasts that express little or no elastin have normal transcriptional activity but abnormal rates of elastin mRNA degradation. This defect is substantially reversed by TGF-beta through mRNA stabilization. Current studies explore the hypothesis that stability determinants lie within the 3' untranslated region of elastin mRNA. Post-transcriptional control of elastin expression appears to be a major regulatory mechanism.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cutis Laxa / metabolism
  • Elastin / biosynthesis*
  • Fibrosis / metabolism
  • Humans
  • Keloid / metabolism
  • Progeria / metabolism

Substances

  • Elastin