The physico-chemical properties and immunogenicity of experimental vaccines against foot-and-mouth disease (FMD) and poliomyelitis, prepared by treatment of the viruses with N-acetylethyleneimine (AEI), formaldehyde or neutral red, have been studied. None of these reagents affects the rate of sedimentation of the particles or their reaction with antibody against the major immunogenic sites. FMD vaccines prepared by inactivation with AEI or neutral red, behaved like the untreated virus, in that they were disrupted on lowering the pH below 7. The RNA of the AEI-inactivated virus was degraded into slowly sedimenting molecules. Unlike AEI-inactivated virus, from which all the RNA could be extracted with phenol-SDS, the recovery from the neutral red inactivated virus was variable and was sometimes as low as 40%; this RNA gave a heterogenous profile in sucrose gradients. The capsid proteins in the AEI preparation migrated in SDS-PAGE to the same positions as those of untreated virus, but in the neutral red preparation there was evidence of cross-linking. In contrast, the formaldehyde-inactivated vaccine was stable below pH 7 and the RNA could not be released by extraction with phenol-SDS at pH 5, because the capsid proteins had become cross-linked and/or linked to the RNA. As with foot-and-mouth disease virus (FMDV), poliovirus which had been inactivated with formaldehyde did not release its RNA on extraction with phenol-SDS and the capsid proteins were also cross-linked. Surprisingly, although AEI cleaved the viral RNA slowly in situ, the virus was no longer infectious after 6 h. Neutral red did not reduce the infectivity of the virus. All of the preparations gave similar levels of neutralizing antibody after a single inoculation. The high levels obtained with the formaldehyde-inactivated vaccines have implications for the processing of fixed particles by the antigen-presenting cells.