Objectives: The objective of the study was to evaluate initial curing shrinkage and volumetric change during water storage of six resin-modified glass ionomer cements (Dyract, DeTrey Dentsply; Fuji II LC, GC Dental Int.; Ionosit Fil, DMG; VariGlass VLC, DeTrey Dentsply; Vitremer, 3M Dental Products; Photac-Fil, ESPE), a hybrid composite (blend-a-lux, Blendax) and a chemical-cured glass ionomer cement (ChemFil Superior, DeTrey Dentsply).
Methods: The curing shrinkage was determined 5 min and 24 h after polymerization and mixing, respectively. Volumetric changes were examined after 14 d and 28 d water storage. Curing shrinkage and volumetric changes were evaluated using the hydrostatic principle. In addition, the total water content of the materials was measured after 28 d water storage.
Results: Curing shrinkage of most of the resin-modified glass ionomers was greater than the hybrid composite and the chemical-cured glass ionomer cement. After a 28 d water storage, the resin-modified glass ionomers showed volumetric expansion and the chemical-cured glass ionomer showed volumetric loss. All of the examined glass ionomer materials had a higher total water content than the composite. SIGNIFICANCE. The large curing shrinkage of the resin-modified glass ionomer materials measured in this in vitro study could affect the marginal integrity of glass ionomer restorations.