The overall goal of these studies was to examine the applicability of extrinsic reporter group fluorescence in monitoring the GTP-binding/GTPase cycle of a Ras-like GTP-binding protein. Toward this end, we have labeled the GTP-binding protein Cdc42Hs with the environmentally sensitive fluorophore succinimidyl 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]hexanoate (sNBD) at a single reactive lysine residue. We find that the sNBD-labeled Cdc42Hs undergoes a fluorescence enhancement at 545 nm when Cdc42Hs exchanges bound GDP for GTP. This enhancement is then fully reversed upon GTP hydrolysis. The specific GTPase-activating protein for Cdc42Hs, the Cdc42Hs-GAP, strongly stimulates the rate of reversal of the fluorescence enhancement at 545 nm, consistent with its ability to fully catalyze the GTPase reaction of Cdc42Hs. Conversely, the specific guanine nucleotide exchange factor (GEF), Cdc24, strongly stimulates the fluorescence enhancement that accompanies GTP binding, consistent with its ability to stimulate the GDP-GTP exchange reaction on Cdc42Hs. Resonance energy transfer measurements yielded a distance of approximately 32 A for the sNBD moiety and the guanine nucleotide binding site occupied with either N-methylanthraniloyl- (Mant) dGDP or MantdGTP. Taken together, these results identify a conformationally sensitive reporter site on the Cdc42Hs molecule that is located some distance away from the guanine nucleotide binding site but nonetheless provides a highly sensitive monitor for GTP-binding, GTPase activity, and the interactions of key regulatory proteins.