To determine when and how the dystrophin-positive muscle fibers are formed after myoblast transplantation into dystrophin-negative muscles, the tibialis anterior (TA) muscle from mdx nude mouse was chronologically examined after C2 myoblast transplantation by immunohistochemical and glucose 6-phosphate isomerase (GPI) isoenzyme analyses. The host TA muscle transplanted with C2 myoblasts became necrotic with accumulation of basic fibroblast growth factor in the necrotic areas. This may stimulate concomitant proliferation of the host satellite cells and C2 myoblasts. Small dystrophin-positive muscle fibers appeared in the necrotic areas 3 days after transplantation. This TA muscle contained two different kinds of homodimer GPI isoenzymes but did not contain the heterodimer, suggesting rare fusion of host and donor cells. The dystrophin-positive muscle fibers in the necrotic areas rapidly increased in number and in size by 7 days, but they were smaller than the original host muscle fibers. They had central nuclei, indicating that they were regenerating fibers. The presence of heterodimer GPI isoenzyme in these muscles indicated that the regenerating fibers were mosaic host/donor muscle fibers. The dystrophin-positive muscle fibers are probably formed first by fusion of donor cells with each other and then later by the fusion of host satellite and donor cells.