The replicase of equine arteritis virus, an arterivirus, is processed by at least three viral proteases. Comparative sequence analysis suggested that nonstructural protein 4 (Nsp4) is a serine protease (SP) that shares properties with chymotrypsin-like enzymes belonging to two different groups. The SP was predicted to utilize the canonical His-Asp-Ser catalytic triad found in classical chymotrypsin-like proteases. On the other hand, its putative substrate-binding region contains Thr and His residues, which are conserved in viral 3C-like cysteine proteases and determine their specificity for (Gln/Glu) downward arrow(Gly/Ala/Ser) cleavage sites. The replacement of the members of the predicted catalytic triad (His-1103, Asp-1129, and Ser-1184) confirmed their indispensability. The putative role of Thr-1179 and His-1199 in substrate recognition was also supported by the results of mutagenesis. A set of conserved candidate cleavage sites, strikingly similar to junctions cleaved by 3C-like cysteine proteases, was identified. These were tested by mutagenesis and expression of truncated replicase proteins. The results support a replicase processing model in which the SP cleaves multiple Glu downward arrow(Gly/Ser/Ala) sites. Collectively, our data characterize the arterivirus SP as a representative of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases.